博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【转载】Relevant literature
阅读量:6548 次
发布时间:2019-06-24

本文共 2513 字,大约阅读时间需要 8 分钟。

Relevant literature

Book chapter about the philosophy behind deep architecture model, motivating them in the context of Artificial Intelligence

 

  • Scaling Learning Algorithms towards AI |  |
    Bengio, Y. and LeCun, Y. 
    Book chapter in "Large-Scale Kernel Machines"

Introducing Deep Belief Networks as generative models:

 

  • A fast learning algorithm for deep belief nets |    | 
    Hinton, G. E., Osindero, S. and Teh, Y. 
    Neural Computation (2006)

Deep Belief Networks as a simple way of initializing a deep feed-forward neural network:

 

  • To recognize shapes, first learn to generate images |  | 
    Hinton, G. E. 
    Technical Report (2006) 

General study of the framework of initializing a deep feed-forward neural network using a greedy layer-wise procedure:

 

  • Greedy Layer-Wise Training of Deep Networks |   | 
    Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. 
    NIPS 2006

An application of greedy layer-wise learning of a deep autoassociator for dimensionality reduction:

 

  • Reducing the dimensionality of data with neural networks |    | 
    Hinton, G. E. and Salakhutdinov, R. R. 
    Science 2006

A way to use the greedy layer-wise learning procedure to learn a useful embeding for k nearest neighbor classification:

 

  • Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure |  | 
    Salakhutdinov, R. R. and Hinton, G. E. 
    AISTATS 2007

Different theoretical results about Restricted Boltzmann Machines (RBMs) and Deep Belief Networks, like the universal approximation property of RBMs:

 

  • Representational Power of Restricted Boltzmann Machines and Deep Belief Networks |  | 
    Le Roux, N. and Bengio, Y. 
    Technical Report

A novel way of using greedy layer-wise learning for Convolutional Networks:

 

  • Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition |  | 
    Ranzato, M'A, Huang, F-J, Boureau, Y-L, and Le Cun, Y. 
    CVPR 2007

How to generalize Restricted Boltzmann Machines to types of data other than binary using exponential familly distribution:

 

  • Exponential Family Harmoniums with an Application to Information Retrieval |   | 
    Welling, M., Rosen-Zvi, M. and Hinton, G. E. 
    NIPS 2004

An evaluation of deep networks on many datasets related to vision:

 

  • An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation |   | 
    Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y. 
    ICML 2007

Application of deep learning in the context of information retrieval:

 

    • Semantic Hashing |  | 
      Salakhutdinov, R. R. and Hinton, G. E. 
      IRGM 2007

转载于:https://www.cnblogs.com/daleloogn/p/4442391.html

你可能感兴趣的文章
Cannot load from mysql.proc
查看>>
Apache Thrift 教程
查看>>
Python Epoll
查看>>
AS3歌词同步详解
查看>>
单例模式
查看>>
Linux环境NetBeans字体通用抗据齿解决方法
查看>>
Eclipse的花括号(brace)的输入偏好问题
查看>>
工作记录
查看>>
HDOJ 1698
查看>>
linux里安装redis以及redis的安全设置
查看>>
Mysql Procudure
查看>>
作业第六次
查看>>
构建之法 第一章 概论
查看>>
Hadoop编译安装
查看>>
汇编字符串拷贝
查看>>
Lambda的前世今生
查看>>
TCP/IP模型简介和/etc/hosts文件说明
查看>>
UIButton常用属性
查看>>
主键自增归0
查看>>
mysql之 [ERROR] InnoDB: Unable to lock ./ibdata1, error: 11
查看>>